
Characterizing Earth-like Exoplanets with Space Telescopes

Steven Beckwith

February 28, 2008

Jet Propulsion Laboratory

Motivation

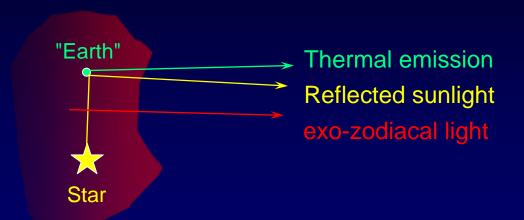
The magnitude of the problem

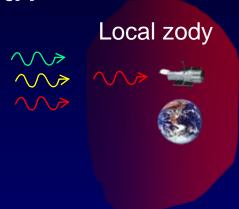
The interesting region

QuickTime™ and a decompressor

Earth as viewed by Voyager

The Earth's Atmosphere


Cloud-free


QuickTime decomp are needed to see

Characterizing Atmospheres

- Direct spectra (single telescopes, interferometers, w/ or wo/ aids like occulters)
 - Req. 1D: capture the faint light from the planet
 - Req. 2D: suppress unwanted light from the bright star & local background radiation (~10⁻¹⁰)
- Transmission spectra through transit observations
 - Req. 1T: capture enough starlight to distinguish tiny (~10⁻⁷)
 differential changes in the light curves
 - Requirement 1D effectively limits the distance a telescope of a given collecting area can detect Earth.
 - Requirement 2D is a constraint on the optical system.
 - Requirement 1T is driven more by the contrast requirement than the stellar brightness.

Direct Detection of exo-Earth

Photon statistics of the earth signal and background (zody + exo-zody) set the natural detection limits:

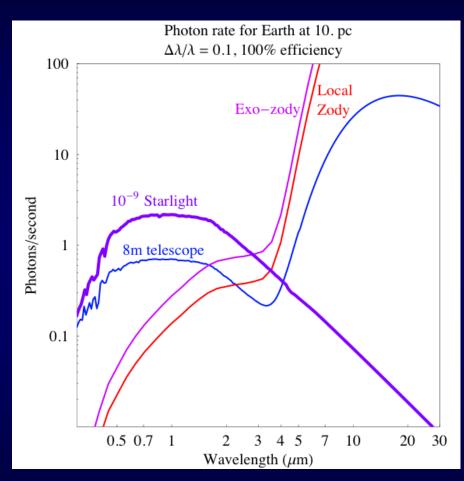
QuickTime™ and a decompressor are needed to see this picture

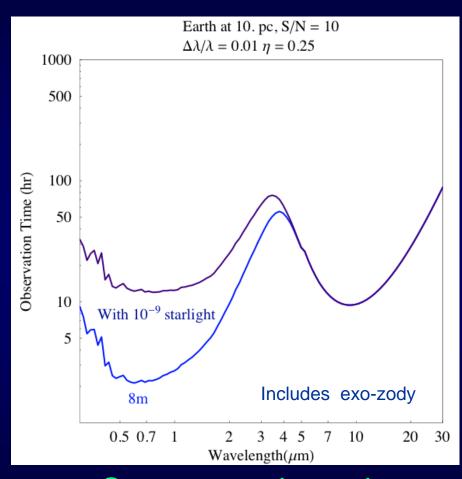
QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

 $D_{max} \sim 40 {
m pc} \ \eta^{1/2} \ d_{tel} / 8 {
m m}$

Observation of Earth @ 10 pc

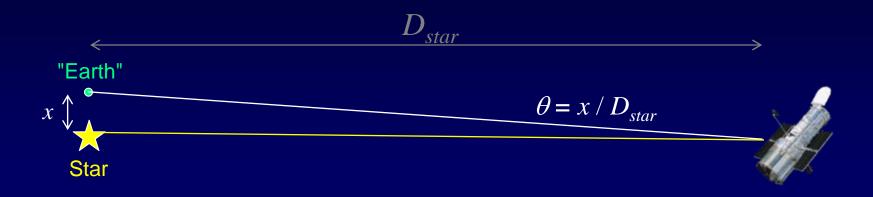

QuickTime™ and a decompressor are needed to see this picture QuickTime[™] and a decompressor are needed to see this picture

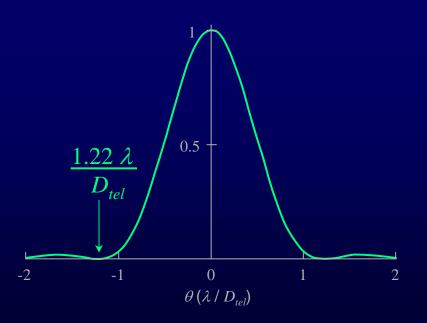

Includes exo-zody

Photometric detection

Spectroscopic study

Effect of uncancelled starlight

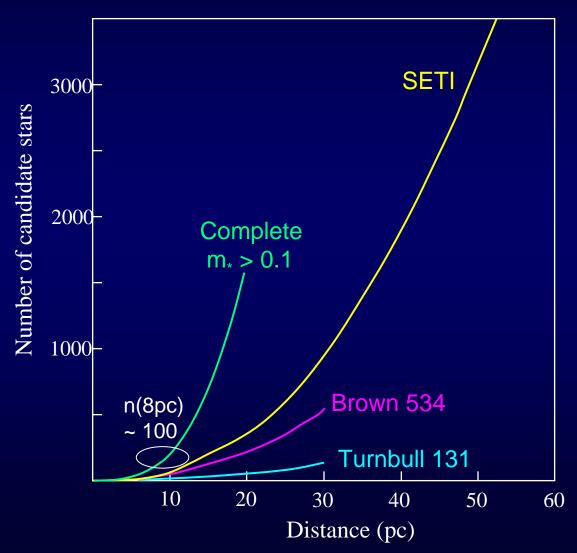




Photometric detection

Spectroscopic study

Suppressing the Starlight



Smallest possible inner working angle for a circular telescope: $\theta_{airv} = 1.2 \ \lambda \ / \ d_{tel}$

Practical designs give $\theta_{IWA} \sim 3-4 \ \lambda \ / \ d_{tel}$

Define:
$$\theta_{IWA} = X \theta_{airy}$$

= $X 1.2 \lambda / d_{tol}$

Samples of local stars

- Turnbull/Brown select nearby G & K stars
- Complete sample stars are mostly M dwarfs
- SETI sample is from Turnbull & Tarter 2003: ~18,000 to 2 kpc

Habitable Zone:

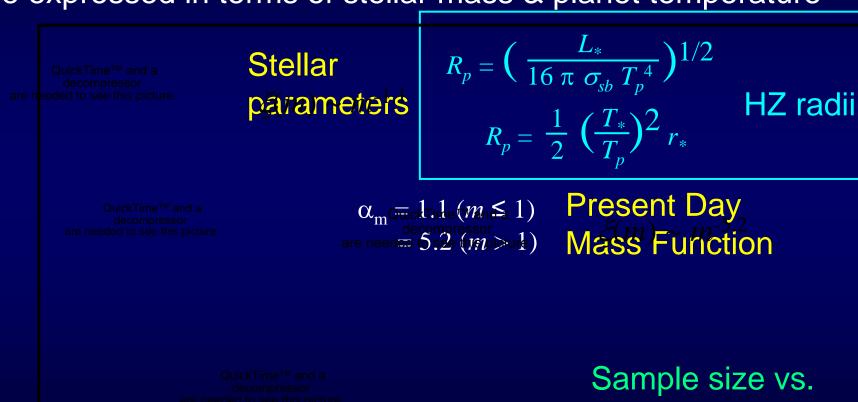
$$r_{in} = \left(\frac{L_{star}}{16 \pi \sigma_{sb} (373)^4}\right)^{1/2}$$

$$r_{out} = \left(\frac{L_{star}}{16 \pi \sigma_{sh} (273)^4}\right)^{1/2}$$

$$\log \left[\frac{r_{out}(HZ)}{r_{in}(HZ)} \right] = 0.27$$

Sample Growth vs. Telescope Size

$$\theta_{IWA} = 25 \text{ mas } (10 \text{m} / d_{tel})$$


$$N_{\text{vol}} \sim D_{\text{max}}^{3}$$
 $\sim d_{\text{tel}}^{3}$

But, $\theta_{\text{IWA}} \sim d_{\text{tel}}^{-1} \Rightarrow$ increases sample through lower luminosity stars with smaller Habitable Zones

$$N \sim d_{\rm tel}^{3.3}$$

Parametric sample analysis

MS stellar parameters & PDMF allow the sample sizes to be expressed in terms of stellar mass & planet temperature

stellar mass

Sample size vs. observing parameters

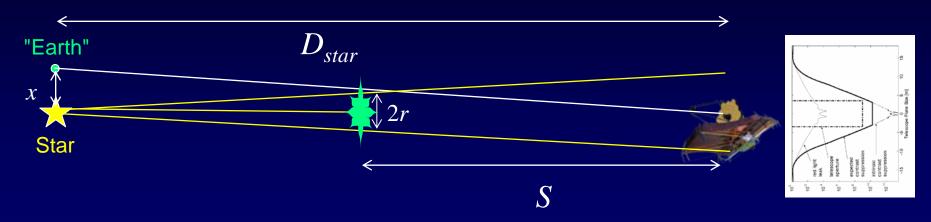
QuickTime[™] and a decompressor are needed to see this picture.

$$\theta_{IWA} = X \ \theta_{airy}$$

QuickTime[™] and a decompressor are needed to see this picture

Coronagraph: X = 2

QuickTime™ and a decompressor are needed to see this picture Occulter: X = 1


Interferometer: X = 0.1

These samples include all star systems. The number of stars suitable for life will be some fraction of the samples.

Coronagraphic samples

QuickTimeTM and a deco npressor are needed to see this picture.

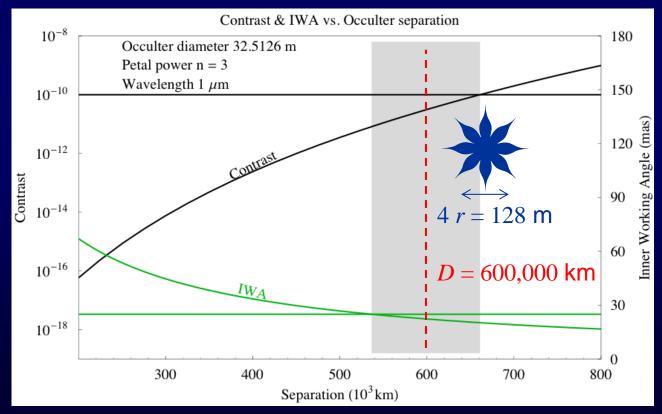
External Occulter (New Worlds Observer)

Petal shape: $T(\rho) = \exp[-(\rho - r_1)/r_2)^n$ for $\rho > r_1$

Inner Working Angle: $\theta_{IWA} = (r_1 + r_2) / S$

Contrast: $C = [(n!)^2 (\lambda S / 2\pi r_1 r_2)^{2n}]^2$

To study planets we want: $\theta_{IWA} < x / D_{star}$ (small θ_{IWA}) $C < 10^{-10}$ (small contrast)

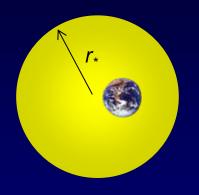

Optimizing r & D

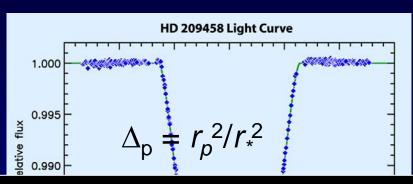
$$\theta_{IWA} = 2 r / S \sim 25 \text{ mas}$$

$$C = [(n!)^2 (\lambda S / 2 \pi r^2)^{2n}]^2 \sim 10^{-10}$$

$$r=(n!)^{1/n} \ \lambda \ / \ (\pi \ \theta_{IWA} \ C^{1/4n})$$

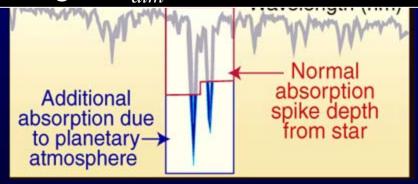
 $r=32.5 \ \text{m} \ \lambda_{\mu m} \ (\theta_{IWA} \ / \ 25 \ \text{mas})$


$$S = 540,000 \text{ km } \lambda_{\mu m} (\theta_{IWA} / 25 \text{ mas})^{-2}$$


$$n = 3$$
$$C = 10^{-10}$$

Transit spectroscopy

 h_{atm}



QuickTime™ and a decompressor are needed to see this picture

Signature is independent of planet size to first order (\sim density): increasing r_p (mass) decreases scale height, h_{atm} .

QuickTime™ and a QuickTime™ and a decompressor decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture

Scale height factor vs. optical depth: $x \approx 4.2 + \ln \tau_0$

Transit spectroscopy

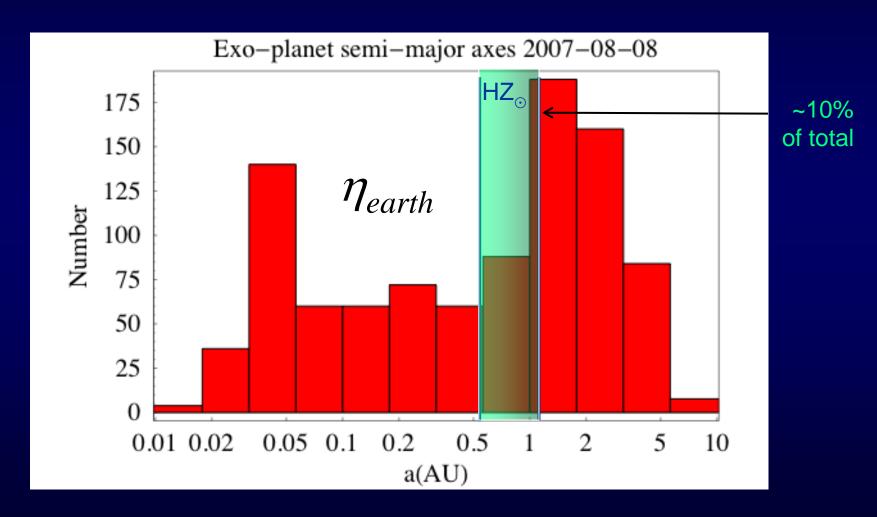
Sensitivity of transit spectroscopy *increases* as the stellar mass (temperture, size) *decreases*: the sample is dominated by low-mass stars.

are needed to see this picture.

QuickTime[™] and a decompressor are needed to see this picture

QuickTime™ and a decompressor are needed to see this picture.

Transit samples


QuickTime™ and a decompressor are needed to see this picture.

Population Samples vs. Methods

QuickTime™ and a decompressor are needed to see this picture

Finding Exo-Planets between rin & rout

About 15% of survey stars have (Jupiter-mass) planets About 10% of these will be in the Habitable Zone ⇒ 1.5%

Planet Detection & TPF

- Photon rates from exo-Earths make photometric detection straightforward with modest (2-4m) size telescopes
- Spectroscopy (λ/Δλ~100) of exo-Earths could be done with ~4m telescopes with great patience and no margins
 - Large collecting areas are desireable, probably required
- Coronagraphic telescopes will have to be large (>8m) to study the habitable zones (HZ) of a good sample of nearby stars
 - At least ~8m sizes necessary to give small inner working angles
- Occulters (NWO, e.g) will have to be large (>60m) and at large distances (~600,000 km) from a space telescope for the small inner working angles (IWA) to study the HZ of nearby stars

These conclusions suggest that modest proposals (~4m-class telescopes) cannot produce credible TPF programs, and that we can consider the use of very large apertures (10 - 30m).